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ABSTRACT

In this work we present Vul4J, a Java vulnerability dataset where
each vulnerability is associated to a patch and, most importantly, to
a Proof of Vulnerability (PoV) test case. We analyzed 1803 fix com-
mits from 912 real-world vulnerabilities in the Project KB knowledge
base to extract the reproducible vulnerabilities, i.e., vulnerabilities
that can be triggered by one or more PoV test cases. To this aim,
we ran the test suite of the application in both, the vulnerable and
secure versions, to identify the corresponding PoVs. Furthermore,
if no PoV test case was spotted, then we wrote it ourselves. As
a result, Vul4J includes 79 reproducible vulnerabilities from 51
open-source projects, spanning 25 different Common Weakness
Enumeration (CWE) types. To the extent of our knowledge, this is
the first dataset of its kind created for Java. Particularly, it targets
the study of Automated Program Repair (APR) tools, where PoVs
are often necessary in order to identify plausible patches. We made
our dataset and related tools publically available on GitHub.
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1 INTRODUCTION

As the threat landscape keeps evolving, detecting and patching
software vulnerabilities are crucial activities in the software devel-
opment industry. However, empirical evidence points to the painful
fact that about 50% of developers cannot either identify or fix vul-
nerable code [10]. In this context, the silver lining is represented
by automation, especially by automated tools for the localization
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of vulnerabilities that, although not perfect, are already available
in the market (e.g., Flawfinder [2], FindSecBugs [1], etc.). Neverthe-
less, the automatic generation of security patches via Automated
Program Repair (APR) techniques is still in its early infancy. Only a
handful of security-specific approaches have been published so far
[9, 12, 13, 15] and they have not been benchmarked at the moment,
as there is no benchmark dataset available. Furthermore, initial
evidence shows that traditional APR tools do not perform well on
security bugs [18]. Therefore, there seems to be a strong call for
further research in this area. Still, there is a lack of publicly available
data which, in turn, impairs the experimentation and development
of novel APR techniques for security bugs.

Motivation. There exist several vulnerability datasets for many
programming languages [4, 7, 16, 19]. However, they do not con-
tain bug-witnessing test cases to reproduce their corresponding
vulnerabilities, i.e., the so-called Proof of Vulnerability (PoV). Such
test cases are often essential for many APR approaches, as they are
used as oracles in order to determine whether a generated patch
contains an effective repair. In general, it is hard to reproduce ex-
ploitation (i.e., PoV) for some kinds of vulnerabilities. It is also
desirable to have realistic patches associated to the vulnerabilities,
e.g., as defined by the actual developers of the software application.
For instance, such patches can be used as ground truth when as-
sessing the generated security patches. In conclusion, curating a
dataset of real vulnerabilities, with the corresponding patches and
with the PoV test cases is a time-consuming task.

Contributions. The contribution of this paper is two-fold. The
first one consists of a dataset with 79 reproducible, real-world Java
vulnerabilities corresponding to 51 open-source projects. For this
we have i) analyzed the fix commits of 912 Java vulnerabilities from
the knowledge base of Project KB [3, 19], ii) tried to reproduce them,
and iii) retained those ones that met our criteria (see Section 2).
Some vulnerabilities did not include any pre-existing PoV test case.
Therefore, we created themmanually by using the available patches
as reference. Finally, the vulnerabilities in our dataset are isolated
and contain sufficient testing information to allow the evaluation of
the patches generated by APR tools. To the best of our knowledge,
this is the first dataset of its kind for the Java programming language.
The only other similar dataset has been recently released for the
C/C++ programming language [18].

As a second contribution, we have built an execution framework
on top of the dataset. The framework is able to automatically exe-
cute some common tasks required by APR systems on the projects
in our dataset, and validate the reproducibility of the newly added
vulnerabilities.
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2 DATASET CONSTRUCTION

We have followed the criteria proposed by Just et al. [14] to con-
struct our vulnerability dataset. Particularly, each vulnerability
included in Vul4J should meet the following requirements:

C1. Vulnerability is related to Java source code: The vul-
nerability should have an identifier on the Common Vulnerabilities
and Exposures (CVE) website or in the project’s bug management
system, and should be both introduced and patched in Java source
files. We exclude the vulnerabilities that require fix actions in Java
test files, configuration files, and webpage files (e.g., JSP) since APR
tools cannot fix these bugs yet.

C2. Contain an appropriate test suite: Test-based APR tools
require the presence of test cases revealing the vulnerability’s behav-
ior, as the test cases are used as input to perform fault localization
and validate the generated patches. These test cases should fail be-
fore, and pass after, the vulnerability’s patch is applied. Therefore,
we keep only the vulnerabilities which have at least one existing
test case that can identified as a PoV (more details in Section 2.2),
or those with sufficient information for us to manually write the
PoV test cases (more details in Section 2.3).

C3. Reproducible: The project source code should be published
publicly, and the revision containing the patch should be accessible.
At that revision, the source code of the project should be buildable
and the patch should make the status of the PoV test cases change
from failing to passing.

C4. Vulnerability is isolated: The patch should only introduce
changes that fix the vulnerability. It should not contain unrelated
changes, such as developing other features or refactoring.

Asmentioned in Section 1, there are several vulnerability datasets
available in the related work but do not fulfill the above criteria.
Hence, we have created our own starting from the available Java vul-
nerability datasets. Particularly, we selected the Project KB knowl-
edge base maintained by SAP (we refer to it as SAPKB from now
on) [3, 19], which is manually curated by the National Vulnera-
bility Database (NVD) and project-specific web pages. It contains
912 publicly disclosed vulnerabilities with 1803 corresponding fix
commits from 358 open-source Java projects. We choose SAPKB
because it contains vulnerabilities from real-world projects rather
than synthetic ones. The use of toy-like of synthetic data in se-
curity has been deprecated by several authors, including the re-
cent work by Chakraborty et al. [5]. Furthermore, SAPKB contains
the vulnerability fix commits from the developers. Such human-
created patches are very valuable, as they can be used to validate
the machine-generated patches produced by APR tools. In the fol-
lowing subsections, we describe the process we followed to create
our vulnerability dataset.

2.1 Patches filtering

We have filtered the vulnerability list as follows:
Step 1: We tried to download the source code from all the repos-

itories included in the dataset. Nine repositories were no longer
accessible with the given information in SAPKB. Therefore, we
obtained the source code of 349 out of 358 repositories. At this
point, there were 899 unique vulnerabilities with 1705 fix commits.

Step 2: To satisfy criteria C4 we sought to retain only the vul-
nerabilities with single-fix commits as multiple fix commits may

introduce unrelated changes. We found 553 vulnerabilities with a
unique ID and a single-fix commit. Other records were reported as
duplicated as they correspond to patches performed over different
versions of the same project (i.e., located on different branches).
We manually examined and validated whether such records were
creating the exact same patch by looking at their commit infor-
mation (e.g., commit message, commit tag, changes in the source
code). We then chose one of them and added it as the official patch
for that vulnerability. As a result, we discovered 132 additional
vulnerabilities that matched the criteria of C4.

Step 3: We then used Git to extract the information of 685
patches retained from last step including the locations (i.e., the
file level) where the source code is modified along with the number
of changed lines, the revision number before the patch (𝑉𝑣𝑢𝑙 ), and
the revision number after the patch (𝑉𝑓 𝑖𝑥𝑒𝑑 ). Only those patches
involving changes in Java source files (i.e., with file name ending
in .java but not starting with Test or ending with Test.java) were
kept, as they satisfy criteria C1. We further excluded patches whose
𝑉𝑣𝑢𝑙 and𝑉𝑓 𝑖𝑥𝑒𝑑 do not support building tools such asMaven, Gradle,
and Ant, as these are difficult to build and compile (their building
scripts often contain errors). By the end of this step we obtained
417 candidate patches.

2.2 Vulnerabilities reproduction

After filtering and obtaining the list of patches along with their
𝑉𝑣𝑢𝑙 and 𝑉𝑓 𝑖𝑥𝑒𝑑 revisions, we tried to reproduce the correspond-
ing vulnerabilities in our local machines. Particularly, we checked
whether patches indeed fix their targeted vulnerabilities or not. For
this, we compared the test-suite execution results of the𝑉𝑓 𝑖𝑥𝑒𝑑 and
the 𝑉𝑣𝑢𝑙 revisions of each patch. If there existed test cases failing
on 𝑉𝑣𝑢𝑙 but passing on 𝑉𝑓 𝑖𝑥𝑒𝑑 (not vice versa), we concluded that
the vulnerability patch was reproducible and thus included it in
our dataset.

From a technical point of view, the process outlined above was
conducted as follows. First, we tried to build the project by exe-
cuting the command corresponding to its supported building tool
(e.g., mvn install, gradle build, ant). Typically, a building process
involves four steps: i) resolving dependencies, ii) compiling the
project, iii) running test suites, and iv) packaging the output arti-
facts. Hence, we first tried to build the𝑉𝑓 𝑖𝑥𝑒𝑑 revision and checked
whether it terminated after the first two steps. If so, we discarded
the vulnerability and marked the patch as “not reproducible”. Other-
wise, we saved the corresponding failing-test list. Only 138 out of
417 patches passed the first two building steps and were thus re-
tained for further analysis. Next, we used the git revert command
to switch the project’s source code back to the 𝑉𝑣𝑢𝑙 revision. We
then repeated the building process and collected the failing test list
once again.

After collecting the failing test lists of 𝑉𝑣𝑢𝑙 and 𝑉𝑓 𝑖𝑥𝑒𝑑 we pro-
ceeded with the identification of PoV test cases. This was done by
extracting the test cases failing in the 𝑉𝑣𝑢𝑙 revision but passing
the 𝑉𝑓 𝑖𝑥𝑒𝑑 . Test cases failing in both revisions were considered
irrelevant and removed when constructing the dataset. As a result,
we gathered 69 vulnerability patches that successfully passed the
whole reproduction processes. Still, another 70 patches that passed
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1 // Human patch
2 public void parseCentralDirectoryFormat(final byte[] data , final

int offset , final int length) {
3 ....
4 - for (int i = 0; i < this.rcount; i++) {
5 + for (long i = 0; i < this.rcount; i++) {
6 for (int j = 0; j < this.hashSize; j++) {
7 }
8 }
9 ....
10 // Manually created PoV test case
11 @Test(timeout = 2000,
12 expected = ArrayIndexOutOfBoundsException.class)
13 public void testCVE_2018_1324 () throws IOException {
14 ZipFile zf = new ZipFile(getFile("vulnerable.zip"));
15 zf.close();
16 }

Figure 1: Human patch and PoV test case for CVE-2018-1324.

the building process did not have a pre-defined PoV test case. For
these ones, we wrote the missing PoV tests manually.

2.3 Missing PoV test cases creation

Inspecting all 70 vulnerability patches manually was not feasible
given the high amount of time it would demand. Therefore, we
only considered patches containing three modified lines or less.
For writing the test cases, we followed the vulnerability exploita-
tion guidelines and resources available either at the NVD website
or inside the project’s Bug Management System. We carefully ex-
amined the patches to understand the fix actions and the context
of the vulnerability. Then, we manually wrote test cases that per-
form the exploit and assert the system’s expected behavior. In total,
we successfully wrote new test cases for 10 vulnerability patches,
increasing our dataset to a total of 79 vulnerabilities.

Example: Figure 1 shows the developer patch and the corre-
sponding manually-written test case for vulnerability CVE-2018-
13241. Here, the development team of the Apache Commons Com-
press library used the wrong variable type in the iteration loop
(line 4). Consequently, some extra fields from the input file (a Zip
file) are parsed unintentionally. With a specially-crafted Zip file, a
hacker could perform a denial of service attack by generating an in-
finite loop in the system. We checked the corresponding bug report
in the project’s Bug Management System2 and located a ZIP file
(“vulnerable.zip”) that can be used for recreating this attack. Then
we wrote a test code that creates a new ZipFile object out of the
original one (line 14). As mentioned before, if such a vulnerability
is present, then the test code will cause an infinite loop. Hence, we
added test assertions to make sure that the unit test will finalize in
no more than two seconds (line 11).

3 DATASET DESCRIPTION AND STATISTICS

After completing the curation phase, our dataset contained 79 re-
producible vulnerabilities from 51 real-world Java projects. The
dataset is publicly available in a GitHub repository3 where each
vulnerability is stored on a separated branch. We included a csv
file with some summary information for each entry in the dataset4

1https://nvd.nist.gov/vuln/detail/CVE-2018-1324
2https://issues.apache.org/jira/browse/COMPRESS-432
3https://github.com/bqcuong/vul4j
4https://github.com/bqcuong/vul4j/blob/main/dataset/vul4j_dataset.csv

Table 1: Projects included in the dataset Vul4J.

Project #Vuls kLOC #Tests #PoVs
apache/struts 10 359 1,697 10
apache/commons-compress 4 48 927 5
jenkinsci/jenkins 3 275 518 3
spring-projects/spring-
framework

3 684 2,189 6

spring-projects/spring-
security

3 198 513 3

apache/camel 2 925 5,222 4
apache/commons-fileupload 2 6 70 3
apache/commons-imaging 2 42 562 2
apache/cxf 2 737 89 3
apache/pdfbox 2 145 359 2
apache/sling 2 507 25 3
cloudfoundry/uaa 2 182 2,669 2
FasterXML/jackson-
dataformat-xml

2 9 140 2

inversoft/prime-jwt 2 2 33 2
OpenRefine/OpenRefine 2 144 516 2
36 other projects (mean) 1 121 567 2.1
all projects (mean) 1.5 169 705 2.5

Figure 2: Distribution of vulnerabilities by CWE categories.

including the vulnerability ID, the human patch URL, the build
configuration (build system and compliance level), the names of
failing tests and failing modules, the build command, and the tests
execution commands. Such information is essential for reproducing
the vulnerabilities. It should be noted that only the vulnerability
ID and the human patch URL are currently available in SAPKB.

Table 1 shows the projects added to our dataset. Due to space lim-
itations, we only report detailed information of the top 15 projects
containing most of the vulnerabilities. For the rest, we have com-
puted average values. Apache Camel is the project with the highest
number of Lines of Code (LOC) (more than 925k), whereas the one
with the smallest amount is Prime JWT (around 2k LOC). The num-
ber of test cases per project ranges from 25 to 5,222. The projects
in our dataset span over multiple domains including libraries, web
frameworks, data-processing desktop apps, and CI/CD servers. This

https://nvd.nist.gov/vuln/detail/CVE-2018-1324
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https://github.com/bqcuong/vul4j
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suggests that the included vulnerabilities come from projects of
different sizes and application domains.

Figure 3: Coverage of OWASP Top 10 Web Application Secu-

rity Risks (2017)

As illustrated in Figure 2, our dataset covers 25 unique classes of
vulnerabilities (or CWEs) being CWE-20 – Improper Input Validation
the most frequent one (11.4%). Due to the scarcity of information
available, 13 vulnerabilities could not be mapped into any of the
CWE types included in the NVD website.

Figure 3 shows the vulnerability coverage over the OWASP Top
10 Web Application Security Risks (2017)5, which is a well-known
taxonomy often used to assess the diversity of vulnerability datasets.
OWASP A5 - Broken Access Control is the most prevalent category,
as it was found in eight different projects. Overall, 28 out of 79
vulnerabilities correspond to the OWASP Top 10 (35.4%). We plan
to curatemore vulnerabilities for covering all the OWASP categories
in the future.

4 DATASET USAGE FOR APR STUDIES

Our main goal is to encourage practitioners and researchers to
use our dataset as a benchmark for the evaluation of current and
forthcoming APR tools. There are only a few repair tools focusing
on Java vulnerabilities [6, 15, 20], however, their implementations
are not publicly accessible. Therefore, we hope many better APR
techniques for fixing security bugs will be proposed in near future
with the presence of our dataset.

On top of our dataset, we have built an execution framework that
allows running several APR-evaluation tasks, as well as to validate
and reproduce vulnerabilities in a convenient way. The following
example illustrates the usage of our framework and dataset included
in the Vul4J repository.

Assisting APR evaluation: APIs can automatically:
• checkout the vulnerabilities from Vul4J repository to a temp
folder for evaluation purposes.

• compile & build the project’s source code and test code. Cur-
rently, only the projects using Java 7 and Java 8 are sup-
ported.

5https://owasp.org/www-project-top-ten/2017/Top_10

• run tests of the project and report their results using JavaScript
Object Notation (JSON) format, so it can be easily consumed
by other programs.

Validating vulnerability’s reproducibility: After adding a
new vulnerability to the dataset, this API could be used to automat-
ically validate whether its corresponding project is buildable and if
PoV test cases are successfully identified.

5 RELATEDWORK

There are several vulnerability datasets created from real-world
open-source projects in the literature. Ponta et al. [19] (used in
this work) continuously monitored the NVD website and 50 other
project-specific web pages, seeking for new Java vulnerability dis-
closures then. Their approach consists of manually extracting and
verifying fix commits, what translates into a high confidence level
of the patch quality. Gkortzis et al. [11] collected a multilingual vul-
nerability dataset of open-source projects by automatically crawling
reports from the NVD website and downloading source code of
these projects from Version Control Systems. Then they mapped
the vulnerable project versions they found in NVD reports to the
version references (i.e., commit tags and branches) in the project
repositories. Hence, it is possible to know at which revision number
a project is vulnerable, but no further information can be obtained.
Nikitopoulos et al. [16] also presented a vulnerability dataset cover-
ing more than 40 programming languages. Particularly, they only
considered and collected vulnerabilities from the NVD website
whose fix commits were available. They categorized such vulnera-
bilities by CWE types and located patches on a file granularity level.
Furthermore, for each vulnerability in their dataset, they provided
a pair of vulnerable and non-vulnerable source code files.

6 LIMITATIONS

Currently, we have considered only simple vulnerability patches
when creating the missing PoV test cases. We wrote PoV test cases
for 10/70 vulnerability patches. In the future, we plan to cover
more vulnerabilities with the help of test generation tools, such as
Randoop [17] and EvoSuite [8].

7 CONCLUSIONS

In this paper, we present for the first time a dataset, namely Vul4J,
consisting of 79 real world Java vulnerabilities from 51 open-source
projects along with their exploiting test cases. This dataset is de-
signed for the purpose of aiding the evaluation of current and future
APR techniques on security bugs. We provide our released dataset
as a single Git repository, where each vulnerability lies on a branch,
along with a csv file that summarizes information about vulnera-
bilities. There are also useful APIs implemented to automate some
common tasks on the dataset. This helps the practitioners to easily
set up the vulnerabilities to feed to APR tools, also validate the
reproduction progress of newly added vulnerabilities in the dataset.
In ongoing work, we are extending the dataset to include more
vulnerabilities, in order to cover more vulnerability classes.
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